Rigidity of proper holomorphic self-mappings of the pentablock
نویسندگان
چکیده
منابع مشابه
Proper Holomorphic Mappings in Tetrablock
The theorem showing that there are no non-trivial proper holomorphic self-mappings in the tetrablock is proved. We obtain also some general extension results for proper holomorphic mappings and we prove that the Shilov boundary is invariant under proper holomorphic mappings between some classes of domains containing among others (m1, . . . , mn)-balanced domains. It is also shown that the tetra...
متن کاملProper Holomorphic Mappings in the Special Class of Reinhardt Domains
A complete characterization of proper holomorphic mappings between domains from the class of all pseudoconvex Reinhardt domains in C with the logarithmic image equal to a strip or a half-plane is given. 1. Statement of results We adopt here the standard notations from complex analysis. Given γ = (γ1, γ2) ∈ R 2 and z = (z1, z2) ∈ C 2 for which it makes sense we put |z | = |z1| γ1 |z2| γ2 . The u...
متن کاملProper Holomorphic Mappings of the Spectral Unit Ball
We prove an Alexander type theorem for the spectral unit ball Ωn showing that there are no non-trivial proper holomorphic mappings in Ωn, n ≥ 2. Let Mn denote the space of n× n complex matrices. In order to avoid some trivialities and ambiguities we assume in the whole paper that n ≥ 2. Let ρ(A) := max{|λ| : λ ∈ Spec(A)} be the spectral radius of A ∈ Mn. Denote also by Spec(A) := {λ ∈ C : det(A...
متن کاملinvestigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem
در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...
The Bergman Kernel Function and Proper Holomorphic Mappings
It is proved that a proper holomorphic mapping / between bounded complete Reinhardt domains extends holomorphically past the boundary and that if, in addition, /~'(0) = {0}, then / is a polynomial mapping. The proof is accomplished via a transformation rule for the Bergman kernel function under proper holomorphic mappings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.10.092